
2022 Technical 
Documentation



“
”

I've been a mentor on the team since the 2014 
off-season and I’m blown away by everything we have 
accomplished in the last 7 years. Our program is quite 
incredible–just keep spreading the message of FIRST in 
the community, especially in places and with populations 
where we don't have reach right now, and keep driving 
towards excellence.

“
- Saikiran Ramanan



I. Design Process
- Game Strategy 
- Ranking Specifications
- Prototyping
- CAD Design
- Fabrication

II. Mechanical Design
- CAD Process
- Final Design
- Drivebase
- Intake
- Hopper
- Shooter
- Climber
- Outtake
- T=0 Climb

III. Programming
- General Shooting
- Shooting and Moving
- Automatic Ball Ejection
- One Click Climb
- Autonomous
- Auto Builder GUI

Some final remarks

Table of Contents
5
6
7
8
9

11
12
13
14
15
16

17-18
19

20-21

23
24
25
26

27-29
30-31

33



I. Design Process



Game Strategy
In years prior, we’ve watched the kickoff livestream in-person as a team. 
This year was different. As it’s hard to maintain social distancing when 
having a team-wide discussion, this season’s strategy was planned out on 
a virtual meeting so we can have an open discussion without any risks.

To plan out overall season strategy, we start by first reading through the 
entire game manual as a team so everyone–no matter if you’re a new 
student or veteran–can contribute to the discussion. Then, we start 
creating a list of our goals for the season. Our goals will determine what 
strategy we want to employ on the field. 

Goals:
1. Win Champs
2. Win subdivision
3. Win Chairman’s
4. Win regional
5. Seed high 
6. Win matches

Strategies:
1. Win RP
2. Score points
3. Fast cycles
4. Drive under 

defense
5. Climb high

5



Ranking Specifications
From out list of goals, we then ask what exactly our robot needs to do to 
achieve these goals. These what’s are our robot specifications. It’s 
important in this step to only ask what and disregard any how’s. 
Implementation of our specifications is a design problem which we will 
figure out when we start prototyping and CADding.

After a long list of specifications are compiled from open discussion, we 
move through each specification individually and sort each as a Wish, 
Prefer, or Demand

Wish: while beneficial, not worth time and effort

Prefer: worth looking into if we have extra time 
and resources

Demand: absolutely must be on the robot 

6



Prototyping 
Next, our team splits into smaller subsystem groups to prototype ideas 
following our wish, prefer, demand list. This year, prototyping groups also 
acted as cohorts to contain possible exposure to the coronavirus.

Subsystem groups brainstorm ideas and build prototypes with wood and 
scrap material. It is important to collect data and document functionality 
through video in this step so designers can look back to determine 
subsystem specifications

Intake prototype Hopper prototype

Shooter prototype

7



CAD Design
Every season, our goal is to finish the detailed modeling of each 
subsystem by week 3. This year, we finally kept close to this deadline!

The CAD Design phase is a constant back-and-forth between the CAD 
subteam, prototyping group, and mentors. Based off of testing, the 
prototype group relays information to the CADder assigned to the group. 
Once an initial design have been modeled, the CADder presents the 
design to mentors and teammates in an open discussion. Any feedback 
is quickly implemented and another round of review begins. 

Once a design has been approved, drawings are created to turn each 3D 
part into a 2D diagram to be manufactured by the manufacturing 
subteam.

Even while their designs are being manufactured, CADders often start 
designing improvements based on information released by other teams 
or new information from continued prototyping. Iteration and 
improvement is extremely important to our team.

8



Fabrication
The manufacturing subteam is the largest subteam on our team and 
works to bring the robot model on the computer into reality.

With hundreds of parts to be manufactured, organization and quality is 
key. The manufacturing lead ensures each part is made to the tolerance 
specified on the drawing and completed parts are properly labeled for 
powder coating and assembly. 

Our team uses basic machinery like bandsaw, chop saw, bench grinder, 
and belt sander as well as advanced machinery like mill, lathe, laser 
cutter, CNC mill, and CNC router to manufacture our robot. One of our 
sponsors, Applied Medical, also allows us to use their Water Jet to cut 
large sheet metal plates. 

Unique parts like camera mounts or custom pulleys can be created using 
our Prusa, Ender, and Markforged 3D printers. The Markforged printer 
allows us to print with a carbon-fiber/nylon filament for load-bearing 
parts.

9



II. Mechanical Design



Day 7 We start with block CAD 
to get a basic idea of 
subsystem size

Day 14 Early subsystem designs 
based on prototyping

Day 19 Nearly done! Climber was 
the hardest subsystem this year

Day 100 Refinement and 
iteration is the name of the 
game. Our CAD is never finished.

11



Final Design
Dimensions: 29.5 X 29.5 X 45.9in, 125lb

12



Drivebase

Frame
- 29.5in X 29.5in
- 1/16in box tubing drive frame 
- 1/8in box tubing cross rails for hopper and climber mounting

Swerve Drive
- Four SDS MK4i swerve modules driven by 8 Falcon 500s
- 3.5in traction wheels

Hybrid Electronics Mounting
- RoboRIO, motor controllers, and PDH are mounted in upside-down 

orientation on the bottom of the belly pan for protection against 
bouncing cargo

- PCH, VRM, compressor, pneumatic controls, and ethernet system 
are mounted on topside of belly pan for easy access

13



Intake

Four Bar Linkage
- Four bar design for compact and vertical stow position to save 

more horizontal space for other subsystems
- Mounted with cotter pins for quick replacement in case plates 

become deformed

Shock Absorbing Design
- Shock loads from intake colliding with robots and field elements 

mitigated with flexible polycarbonate four bar linkages
- Pneumatic acts as a gas spring in “out” position to comply to shape 

of cargo

Rollers
- Two rollers made from spaced 4in compliant wheels with 

mecanum wheels on sides to center cargo
- Driven by Falcon 500 geared 1:2

14



Hopper

Polycord Rollers
- Polycord grips and compresses cargo from three contact points to 

keep the cargo controlled and centered
- Roller assembly powered by NEO geared 1:3

Sensors 
- Limelight ensures correct cargo color
- Breakbeam sensor ensures robot never controls more than two 

cargo
15



Shooter

Flywheel
- 4in “Self Cleaning” wheel is semi-compliant to grip cargo
- Driven by two Falcon 500s geared 1:1
- 1.25in cargo compression

Hood
- 40 degree hood range from 90 degrees to 50 degrees to allow us to 

shoot from fender to alliance wall
- Custom-printed 10DP rack and pinion for less wear
- Driven by NEO 550 geared 1:5
- 2in top roller to minimize backspin geared 1:1 off flywheel shaft

Feederwheel
- 4in Andymark Stealth Wheel to feed cargo only when flywheel is up 

to speed to ensure consistent shooting
- Driven by Falcon 500 geared 1:2

16



Climber

Elevator
- One stage elevator that extends 27in in 0.95 sec
- #35 chain drive
- Spring-loaded top latches to grasp bar even when swinging

Gearbox
- Robust and compact two stage gearbox powering #35 chain to 

drive elevator
- Driven by two Falcon 500s geared 1:10.1 
- Pneumatic friction brake to lock climber elevator in position 

between rungs17



Climber (cont.)

Pivot Arms
- Large, 1.5in bore, 5in stroke air cylinders mounted on both sides to 

tilt robot downwards to reach next rung
- Easily removable with 0.5 round shaft and cotter pin attachment 

points due to high shock loads

Claws
- Over the center linkage that does not apply load on driving 

pneumatics; claws can open and close under high load
- Each claw easily holds the weight of a swinging robot
- Contact switches to determine open/close states18



Outtake

Roller
- 2in Thriftybot compliant wheels
- 2.5in custom 3D printed mecanum wheels to center cargo towards 

hopper
- Driven by NEO 550 geared 1:3

Wrong Color Ejection
- Limelight detects cargo color as it enters intake
- If correct color, outtake spins in direction of the hopper
- If wrong color, outtake spins in opposite direction to spit balls out 

of collection area

19



T=0 Climber 

20

When the round ends, pneumatics reset 
back to their default state. Using this 
principle, our post-round climb is driven 
entirely by pneumatics. Thanks to team 
6328 for giving us this idea!

At the end of the round, a grapple claw 
attached to a rope is fired by tensioned 
surgical tubing that was constrained 
during the match with a pneumatic 
pancake cylinder. After the grapple grabs 
onto the traversal bar, a much larger 
pneumatic cylinder pulls on the rope to 
lift our robot off the ground.

This climber would have been extremely 
beneficial to our match strategy because 
it’s entire climb time occurs after the 
match ends, giving our drivers extra time 
to get in a few more cycles. The climber 
is also very low profile as it only takes up 
a tiny, 1in-wide area on the traversal bar. 
This allows for an extremely quick and 
simple triple traversal, which would be 
extremely valuable at competition. We 
finally designed, built, and tested this 
climb in the week before World 
Championships, but it was made illegal 
literally a day after we finally got it 
working. 

So while we’re not using it on our robot, 
we felt like it was a cool concept so it’s 
here in our technical documentation!



T=0 Climber (cont.) 

21

Eligibility
- QA 134: over extension after match doesn’t draw penalties
- QA 154: head ref has discretion over legality of this climb
- QA 166: solidifies QA 134 ruling by making it globally applicable 

and specifically affirms that over-extension after the match does 
not affect eligibility for hangar points

- Precedence set by 2412 at PNW District Championships
- Cleared by inspection for match play
- Not penalized for overextending after match

- Made illegal by Team Update 21 

Grapple
- 6in wide grapple hook
- Spring latches 
- Fiberglass rods act as guides as grapple travels to bar to ensure 

accuracy

Launcher
- Grapple fired to traversal bar with tensioned surgical tubing
- Pneumatic pancake cylinder engages during match to constrain 

grapple hook from firing
- When robot is disabled, pancake cylinder disengages and grapple 

hook is fired

Lift
- Pneumatic cylinder with 2in Bore, 12in Stroke pulls on rope 

attached to grapple hook to pull robot 5 in off ground
- When robot is disabled, cylinder pulls up slowly with help from flow 

control valve



III. Programming



General Shooting
Aiming powered by Vision + Odometry

- Aim times of ≤1s
- Able to solve for the full pose of the robot using vision data & the gyro 

angle
- Sensor fusion with wheel odometry filters out noise from vision
- Latency Compensation allows for higher resolution tracking allowing us get 

useful vision data from anywhere on the field (even from alliance station 
wall)

- Cleanly falls back to robot odometry when vision is not visible/obstructed
Stop and Shoot

- Iteratively predicts stopping position using current robot velocity and 
acceleration, allowing the robot to aim towards correct goal position even 
before it gets there.

- Optimized to be simple and fast for drivers by taking control of robot 
movement and aiming in one press of a button.

Lookup table 
- Used to determine flywheel speed 

& hood angle
- Utilizes the distance 

approximation from the limelight 
& robot tracker with error of < 5in 
at 200in

- 19 different shooter setpoints
- Linear interpolation is used 

to determine the shooter 
configurations between 
multiple setpoints.

- Updatable in real-time with live 
feedback on the current 
configuration

- Config is uploaded when 
typing stops and takes 
effect immediately–even 
while the robot is enabled 
and driving

distance
flywheel
rpm

ejection
angle

23



Shooting and Moving
Shooting while moving

- Will automatically calculates a “fake” goal position to shoot at in order to make 
it into the real goal.

- Achieves this by modeling the ball flight based on robot velocity, and position.
- During our testing we came up with the following system of equations to figure 

out where to aim based on the robot position and velocity

Where:
F = Position of the Fake Goal
P = Position of the robot (relative to the goal)
t = Time of Flight of the ball
a = a scalar value for our time of flight (technically our time of flight is a 
piecewise function with a linear bit at the beginning, but any continuous 
function works for the way we solve it)

We then use successive approximation to solve this system of equations to 
obtain a “fake” goal position. We then pass this fake goal position into our 
static shot pipeline to have the robot aim and shoot at that fake goal position.

- All of this happens with the click of one button.

In this image, the robot aims 
slightly right of the goal in 
order to compensate for the 
leftward motion.

24



Automatic Ball Ejection
Ejecting wrong colored balls

- Uses intake mounted limelight in order to detect balls of opposite color.
- In order to ensure that color detection works in all lighting conditions, a 

white LED strip illuminates the balls as they enter the robot.
- Uses outtake mechanism to quickly eject balls, allowing for groups of balls 

to be easily sorted through.

3 Ball Penalty Protection
- A hopper mounted break beam sensor allows for the detection of excess 

balls in the hopper.
- When 3 balls are detected in the robot, it automatically ejects a ball 

through its hood without driver intervention.
- This ensures that we do not obtain a G403 violation as a third ball would 

be ejected from the robot quickly enough to be considered only 
momentary control.

The blue ball is accepted into the robot The red ball is detected as a ball from the opposing 
alliance and is ejected from the robot automatically

25



One Click Climb
Removes human error as the roborio is in control of climb through its 
duration.

Fully automatic, sensor-based climb
- Two contact switches on each pivot arm ensure that we’re 

locked onto the bar before continuing onto the next step.
- Encoders are used to make sure that the arms are extended to 

the correct lengths, at the correct time.
- The NavX2 gyro is used to ensure we’re at the correct part of 

our swing before continuing to the next step.

Driver Activation
- Drivers hold down the climb button while climbing. 
- If the drivers release the button the climb is paused. It is 

resumed once the drivers rehold the button.

Switches ensure 
that we’re latched 
onto the bar

Encoders ensure 
that the elevator 
arm is at the correct 
height

The NavX2 gyro that 
we’re in the correct 
part of our swing to 
continue

26



Autonomous
6 ball auto
Our highest scoring auto. Only used when our alliance partner’s 
autos won’t intersect the path.

5 ball auto
Our main auto. Designed to be extremely reliable and will be our 
goto for most matches. At the end it positions ourselves in the 
ideal spot for the start of teleop

27



Autonomous (cont.)
Buddy Auto (3 ball)
This Auto is designed for if one of our other alliance partners has a 
reliable 5 ball auto. It will take a ball of the bumpers of the 3rd robot 
and then shoot the 2 that it has (1 from the other robot + one 
preload). It then drives to the 3rd ball and shoots that.

2 Ball Auto
These autos are designed to be used in case our other alliance 
members have longer autos that they want to run.

28



Autonomous (cont.)
2 Ball + 2 Hide
In the case where another robot on our alliance has a reliable 5 ball, 
we have a 2 ball auto that hides the opponent cargo on our side of 
the field in the hanger. This makes it so that our opponents have to 
travel slightly further to get their cargo, giving us a slight advantage. 
We also travel through the hanger zone to ensure that a third robot 
has room to back up and get their taxi points. 

29



A fast, intuitive, open-source¹ GUI for quickly designing and iterating 
autonomous routines for FRC.

Features
- Drag and drop GUI for designing robot autos.
- Supports holonomic (swerve, etc.) & differential drivebases.
- Built in scripting blocks that allow you to execute ANY robot method 

with no extra configuration.
- Iterate without deploying code. This tool uses networktables to 

upload autos directly to the robot reducing a normally 20-30s + 
deploy time to less than 3s!

- It utilizes the same path planner as the robot which allows us to 
precisely control the robot path and know the exact duration of each 
path segment. Autos working first try were a common occurrence.

- Real-time feedback. Odometry is streamed to the gui in real time and 
the path the robot drives is visible in the GUI. This allows us to detect 
where errors are occurring and quickly correct them!

- Developed from start to finish by students.

30

Auto Builder GUI

1. https://github.com/FRC3476/AutoBuilder



Intuitive Design
- Full undo & redo support
- Paths are connected. Dragging the end of one path will drag the 

beginning of the next path.
- Adding/Deleting points is as easy as right clicking.
- Error checking & syntax highlighting for scripts.

- Drag & drop to change the order of paths around.

- Driving time is calculated programmatically and easily visible.

- Easily schedule asynchronous scripts to run while the robot is driving.

31

Auto Builder GUI (cont.)





Some Final Remarks
Wow. It’s been a really crazy few years but we’re finally back to doing what 
we love most. After a full year of virtual meetings in 2021, our team had 
two years of students to train for the 2022 season. But our new students 
stepped up to the occasion; this is the first year that we’ve finished the 
robot in a timely matter without needing to rush (as much) before 
competition! 

We’d like to thank our parents, mentors, and generous sponsors for giving 
us the opportunity to build this robot. None of this could have happened 
without them.

And we’d like to thank you, the reader, for being interested in our robot! If 
you’d like more information about us, please visit our website: 
“teamcodeorange.com” There, you can find our previous robots, helpful 
guides, CAD files, and our Github repository. 

Thanks,
Code Orange, FRC Team 3476

33


